

Doppler Based Orbit Determination with Optimization

Open Source CubeSat Workshop 2020

Mehmet Fatih ERTÜRK

In collaboration with: Arabacı, M.C., Cirtil, H.M., Erdenk, B., Ertürk, M.F., Ghanbarpourasl, H., Kaya, M., Sisman, T.C. and Yenidoğan, K.

 Arabacı, M.C., Cirtil, H.M., Erdenk, B., Ertürk, M.F., Ghanbarpourasl, H., Kaya, M., Sisman, T.C. and Yenidoğan, K.(2020), *Doppler Ölçümlerinin Optimizasyonla Yörünge Tespitinde Kullanılması (Orbit Determination with Doppler Measurements Using Optimization)*, VIII. Ulusal Havacılık ve Uzay Konferansı (8th National Aerospace Conference), Ankara, Turkey, Sept 2020. UHUK-2020-154

- Introduction
 - Obtaining Data for the Orbit Determination Methods
 - Doppler Based Orbit Determination
- Method
 - Doppler Shift
 - Generating Artificial Data
 - > Optimization
 - Differential Correction
- Results for Artificial and Real Data

Optic Based

-Optic observations

-Lidar (Light Detection and Ranging)

NROL-76 Visible Pass of a Spy Satellite http://langbroek.org/

Radio Based -Doppler -Radar (Radio Detection and Ranging)

Kiwi Space Radar, New Zeland <u>https://www.leolabs.space/</u>

Optic Based

-Optic observations -Lidar (Light Detection and Ranging)

Radio Based -Doppler -Radar (Radio Detection and Ranging)

SeeSat-LTruSat

#510 – UTAA Astro TEST

Antennas

- UHF-VHF Cross Yagi
- > UHF Yagi
- > VHF Yagi
- > VHF Turnstile
- L-band

Doppler Based Orbit Determination

Guier, McClure and Weiffenbach

https://directory.eoportal.org/web/eoportal/ satellite-missions/content/-/article/transit

Gavaghan, H., <u>Something New Under the Sun: Satellites</u> and the Beginning of the Space Age, Copernicus (1998) Table 1. SPUTNIK I : 20 Mc./s.Estimated experimental error
Root-mean-square fit to observations
Approximate ground-range \pm 4 c./s.
 \pm 1 ·6 c./s.
73 stat. miles
20°Minimum angle of arrival from horizon
 $t_0 = 2347$ G.C.T., October 21, 1957
Latitude of O20°Statiude of O
Longitude of O38° 41' N.
75° 59' W.

Orbit element	Doppler determination	Ref. 1*	Ref. 2 †
Period Eccentricity Inclination	95 min. 38 sec. 0.053 64° 10'	95 min. 36 sec. 0.053 ± 0.001 64° 40' $\pm 10'$	95 min. 34 sec. 0.048 ± 0.002 65°
arg. of peri- gee Latitude of	43° 30'		
Longitude of asc. node	289°	30 ± 3 K. $291.6^{\circ} \pm 0.3^{\circ}$	

* Staff of the Mullard Radio Astronomy Observatory, Cambridge, Nature, 180, 879 (1957).

† Staff of the Royal Aircraft Establishment, Farnborough, Nature, 180, 937 (1957).

Guier, W.H. ve Weiffenbach, G.C. (1958)

https://soundcloud.com/nasa/sputnik-beep

The Effect of Maximum Elevation Angle to Doppler Shift

Path of the Study

Boundaries and Constraints

Particle Swarm Optimization (PSO)

Differential Correction

ALGORITHM 67: Differential Correction (Obs at $t_p \hat{X}_{nom} \Rightarrow \hat{X}_o$) FOR i = 1 to the number of observations N Propagate the nominal state to each t_i and find computed observations $\hat{X}_{nom_i} = \int_{0}^{t} \hat{X}_{nom} dt + \hat{X}_{nom}$ RAZEL (r, momECP, v, mo, day, UTC, $\Delta UT1, \Delta AT, x_p, y_p, \phi_{gd}, \lambda, h_{ellp} \Rightarrow \rho, \beta, el, \dot{\rho}, \dot{\beta}, el$ Find the \tilde{b} matrix as observed minus computed data at each t_i Perform Finite Differencing for the A matrix, or: $\frac{d\hat{X}}{dt} = \dot{\hat{X}}_{2-body} + \dot{\hat{X}}_{nonspherical} + \dot{\hat{X}}_{drag} + \dot{\hat{X}}_{3-body} + \dot{\hat{X}}_{SR} + \dot{\hat{X}}_{other}$ $F = \frac{\partial \hat{X}}{\partial \hat{X}} \qquad \Phi(t, t_o) = \int_{t_o}^{t} F(t) \Phi(t, t_o) dt$ $A = \frac{\partial \text{ observations}}{\partial \hat{X}} \frac{\partial \hat{X}}{\partial \hat{X}} = H\Phi$ Accumulate $A^T WA$ and $A^T W\tilde{b}$ END LOOP $\delta \hat{x} = (A^T W A)^{-1} A^T W \tilde{b} = P A^T W \tilde{b}$ Check RMS for convergence = $\sqrt{\frac{\tilde{b}^T W \tilde{b}}{n_{max}(N)}}$ Update the state vector and repeat if not converged: $\hat{X}_{nom} = \hat{X}_{nom} + \delta \hat{x}$ Vallado, D.A., <u>Fundamentals of Astrodynamics and</u> <u>Applications</u>, 4th Edition, Space Technology Library, (1997)

(1)
$$\vec{X}_{nominal} = [a_0 e_0 i_0 \ \Omega_0 \ \omega_0 \ \theta_0]$$

(2) $\tilde{\boldsymbol{b}} = \left[\dot{\boldsymbol{\rho}}_{observation_{(Nx1)}} - \dot{\boldsymbol{\rho}}_{calculated_{(Nx1)}} \right]$

(3)
$$\delta \vec{x} = \vec{X}_{nominal} * 0.01$$

(4)
$$A = \frac{\delta observation}{\delta \vec{X}_0} \approx \frac{f(\vec{X}_{nominal} + \delta \vec{x}) - f(\vec{X}_{nominal})}{\delta \vec{x}}$$

$$(5) \quad \delta \vec{X} = (A^T W A)^{-1} A^T W \tilde{b}$$

(6)
$$\delta \vec{X} = (A^T A)^{-1} A^T \tilde{b}$$

(7)
$$\vec{X}_{nominal} = \vec{X}_{nominal} + \delta \vec{X}$$

Obtained best Keplerian Elements during the genetic optimization for the ISS.

Data Types	$RMS\left(\frac{km}{s}\right)$	a (km)	e	Ω (°)	i (°)	ω (°)	θ (°)	$\boldsymbol{\omega} + \boldsymbol{\theta} (\circ)$
Reference	0	6797.3239	0.0001128	91.0487	51.6401	7.3517	352.7633	0.1150
<u>PSO</u>	23.2622	6839.6043	0	113.9495	64.7159	128.4201	228.7715	357.1917
Absolute Error	23.2622	85.461	0.0001128	22.9008	13.0758	121.0684	123.9918	2.9233
Differential Correction	1.9076	6814.8966	0.002469	93.8964	52.7811	108.3800	254.2681	2.6481
Absolute Error	1.9076	17.5727	0.0023562	2.8477	1.141	101.0283	98.4952	2.5331

 $\frac{\text{Accuracy}}{\sqrt{\Omega}, i, (\omega + \theta) < 3^{\circ}} \sqrt{a} < 20 \text{ km}$

Obtained best Keplerian Elements during the gradient optimization for the ISS.

Artificial Data	$RMS\left(\frac{km}{s}\right)$	a (km)	е	Ω (°)	i (°)	ω (°)	θ (°)	$\boldsymbol{\omega} + \boldsymbol{\theta} (\circ)$
Reference	0	6797.3239	0.0001128	91.0487	51.6401	7.3517	352.7633	0.1150
Gradient	0.0978	6796.4076	0	91.1522	51.6913	152.1694	207.6454	359.8148
Absolute Error	0.0978	0.9163	0.0001128	0.1035	0.0512	144.8177	145.1179	0.3002

 $\frac{\text{Accuracy}}{\checkmark \Omega, i, (\omega + \theta) < 1^{\circ}} \\ \checkmark a < 1 \text{ km}$

The comparison of the reference state vectors and the results of the gradient optimization for the ISS.

Artificial Data	$RMS\left(\frac{km}{s}\right)$	r (km)	$r_{x}(km)$	$r_{y}(km)$	$r_{z}(km)$	$v\left(\frac{km}{s}\right)$	$v_x \left(\frac{km}{s} \right)$	$v_y(km/s)$	$v_z (km/s)$
Reference	0	6797.3239	-132.8566	6795.2562	10.0967	7.6586	-4.7518	-0.1025	6.0053
<u>Gradient</u>	0.0978	6796.4076	-123.0483	6795.2718	-17.2382	7.6582	-4.7468	-0.0707	6.0093
Absolute Error	0.0978	0.9163	9.8083	0.0156	27.3349	0.0004	0.0050	0.0318	0.0040

 $\frac{\text{Accuracy}}{\sqrt{r} < 1 \text{ km}} \\ \sqrt{v} < 1 \text{ m/s}$

es		Data Types	$RMS\left(km/s \right)$	a (km)	е	Ω (°)	i (°)	ω (°)	θ (°)	$\boldsymbol{\omega} + \boldsymbol{\theta} (^{\circ})$
eas		Reference	0	6797.3239	0.0001128	91.0487	51.6401	7.3517	352.7633	0.1150
/ incr	ISS	<u>The Best Result</u>	0.0978	6796.4076	0	91.1522	51.6913	152.1694	207.6454	359.8148
ricity		Reference	0	7229.2044	0.001298	229. 1645	99.1957	288.9491	71.1680	0.1171
cent	NUAA-19	The Best Result	1.194×10^{-8}	7235.7385	0	229.0974	99.1796	181.7058	179.4342	0.0114
Ш	Express MD2	Reference	0	8518.0033	0.2206	338.5851	49.8869	172.2323	187.8422	0.0745
		The Best Result	0.3587	8519.4081	0.2240	237.6580	57.2400	243.4523	188.0347	71.4870

Obtained best Keplerian Elements after the optimization process for different orbit types.

✓ Increasing on the ellipticity decreases accuracy, but eccentricity becomes predictible.

Obtaining Real Data

Gurwin Techsat 1B - Satellite Information

Designation

Spacetrack catalog number 25397 COSPAR ID 1998-043-D Name in Spacetrack catalog TECHSAT 1B

Amateur radio information

Downlink: 435.225 MHz Uplink: 145.850/145.930 MHz

Satellite Details

Orbit812 x 813 km, 98.7°CategoryunknownCountry/organisation of originIsraelIntrinsic brightness (Magnitude)9.2 (at 1000km distance, 50% illuminated)Maximum brightness (Magnitude)8.3 (at perigee, 100% illuminated)

Launch

Date (UTC) 10 July 1998 06:30 Launch site Baikonur Cosmodrome, Kazakhstan Launch vehicle Zenit-2

Event	Time	Altitude	Azimuth	Distance(km)	Brightness	Sun altitude
Rises	13:49:06	0°	163° (GGD)	3.320	12,1	60,6°
Reaches altitude 10°	13:51:26	10°	162° (GGD)	2.392	11,5	60,3°
Maximum altitude	13:56:44	83°	75° (DKD)	823	9,8	59,8°
Drops below altitude 10°	14:02:04	10°	348° (KKB)	2.408	11,0	59,3°
Sets	14:04:25	0°	348° (KKB)	3.344	11,6	59,0°

Pass of The Received Signal

https://www.heavens-above.com/satinfo.aspx?satid=25397

Artificial, Calculated and Observed Frequency-Time Graphs of the GO-32

Obtained best Keplerian Elements after the optimization process for GO-32.

Gurwin Techsat 1B	$RMS\left(\frac{km}{s}\right)$	a (km)	е	Ω (°)	i (°)	ω (°)	θ (°)	$\boldsymbol{\omega} + \boldsymbol{\theta} (\circ)$
Reference	0	7191.0386	0.0000465	170.8631	98.7304	186.0731	174.0447	0.1178
<u>Gradient</u>	0.5694	7150.1339	0	174.5416	90	116.3571	269.9262	26.2833
Absolute Error	0.5694	40.9047	0.0000465	3.6785	8.7304	69.7160	95.8815	26.27152

 ✓ Usage of gradient optimization with genetic optimization can give accurate results according to an uniformed situation about satellite.

 \checkmark Circularity of the orbit increases accuracy of the results.

Future Works

Reference

- Ali, I., Bobanni, P. G., Al-Dhahir, N., Hershey, J., 2002. Doppler Applications in LEO Satellite Communication Systems., Kluwer Academic Publishers, s. 27-38
- Bassa, C., 2014. Online: Radio Frequency Satellite Tracking., Accessible: github.com/cbassa/strf, Access date: 18.01.2020
- Curtis, H. D., 2010. Orbital Mechanics for Engineering Students., Elsevier, 3. Edition
- Eberhart, R.C. and Kennedy J., 1995. A New Optimizer Using Particle Swarm Theory., Symposium on Micro Machine and Human Science, Japon, 1995
- Estévez, D., 2019. Online: An Strf Crash Course., Accessible: destevez.net/2019/01/an-strf-crash-course/, Access date: 13.02.2020
- Guier, W. H. and Weiffenbach, G. C., 1958. Theoretical Analysis of Doppler Radio Signals from Earth Satellites., Nature, vol.: 181, p. 1525-1526, 31 May 1958
- Guier, W. H. ve Weiffenbach, G. C., 1959. The Doppler Determination of Orbits., Applied Physics Laboratory The Johns Hopkins University, 1959
- Helen, G., (1998) Something New Under the Sun: Satellites and the Beginning of the Space Age., Springer, 1. Edition, 1998

- Patton, R. B., 1960. Orbit Determination from Single Pass Doppler Observations., IRE Transactions on Military Electronics.
- Salehizadeh, S. M. A. ve Yadmellat, P., 2009 Local Optima Avoidable Particle Swarm Optimization., IEEE Swarm Intelligence Symposium, Nashville, 2009
- University of Turkish Aeronautical Association, 2019. Online: Ground Station-Hardware., Accessible: ast.thk.edu.tr/en/groundstation-hardware/, Access date: 08.01.2020
- Vallado, D. A., 1997. Fundamentals of Astrodynamics and Applications., The McGraw-Hill Companies, Inc.
- Vetter, J. R., 2007. Fifty Years of Orbit Determination: Development of Modern Astrodynamics Methods., John Hopkins APL Technical Digest, Vol. 27, No:3
- Wikipedia, 2020. Online: Operation Moonwatch., Accessible: en.wikipedia.org/wiki/Operation_Moonwatch, Access date: 18.02.2020
- Yarpiz, 2016. Online: Particle Swarm Optimization (PSO) in MATLAB-Video Tutorial., Accessible: yarpiz.com/440/ytea101-particle-swarm-optimization-pso-in-matlab-video-tutorial, Access date: 23.01.2020

Doppler Based Orbit Determination with Optimization

Thanks! Questions & Comments

https://imgur.com/gallery/yeGXKVz/comment/34957483

mfatiherturk@outlook.com