Libre Space Foundation

- A non profit organization based in Athens, Greece
- Focus on space applications
- Commitment to open technologies
- Educational activities
Libre Space Foundation

- Established in 2014 after winning the Hackaday prize
- The winning project was the core of the **SatNOGS**
ESA SDR Makerspace
An ESA - LSF collaboration

14-month program with a budget of 500k euros

Investigate the use of SDR technology in space applications

Umbrella activity for 15+ subactivities around SDR and space communication

Several subactivities include contributions to GNU Radio

All results released as open source software and hardware
• Use Soapy API to interface with SDR hardware

• Extract device capabilities dynamically

• Deprecates the gr-osmosdr

• https://gitlab.com/librespacefoundation/gr-soapy.git
gr-soapy

Properties Source

<table>
<thead>
<tr>
<th>General</th>
<th>RF Options</th>
<th>Advanced</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>soapy_source_1_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device</td>
<td>driver-airspy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Args</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling Rate</td>
<td>samp_rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num Channels</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master Clock Rate</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Type</td>
<td>Complex float32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source - out(0):
Port is not connected.

Properties Source

<table>
<thead>
<tr>
<th>General</th>
<th>RF Options</th>
<th>Advanced</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch0: Center Freq (Hz)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch0: Gain Mode</td>
<td>Manual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch0: LNA Gain Value</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch0: MIX Gain Value</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch0: VGA Gain Value</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch0: Automatic Gain</td>
<td>False</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch0: Antenna</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch0: Bandwidth (Hz)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source - out(0):
Port is not connected.
gr-soapy Source Properties

<table>
<thead>
<tr>
<th>General</th>
<th>RF Options</th>
<th>Advanced</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>soapy_source_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device</td>
<td>driver-lime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Args</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling Rate</td>
<td>samp_rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num Channels</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master Clock Rate</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Type</td>
<td>Complex float32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RF Options

- **Ch0 Center Freq (Hz)**: 0
- **Ch0 NCO Freq (Hz)**: 0
- **Ch0 Gain Mode**: Manual
- **Ch0 PSA Gain Value**: 0
- **Ch0 LNA Gain Value**: 0
- **Ch0 TIA Gain Value**: 0
- **Ch0 Antenna**:
- **Ch0 Bandwidth (Hz)**: 0
- **Ch0: Automatic DC Offset N**: False
<table>
<thead>
<tr>
<th>Devices</th>
<th>TX</th>
<th>RX</th>
<th>Multiple Channels</th>
<th>Gains</th>
<th>DC offset Correction</th>
<th>IQ Balance Correction</th>
<th>Auto Gain Control</th>
<th>Frequency Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usrp b 210</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>X</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>LimeSDR mini</td>
<td>✔</td>
<td>✔</td>
<td>N/A</td>
<td>✔</td>
<td>✔</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>PlutoSDR</td>
<td>✔</td>
<td>✔</td>
<td>N/A</td>
<td>✔</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>✔</td>
</tr>
<tr>
<td>AirSpy R2</td>
<td>N/A</td>
<td>✔</td>
<td>N/A</td>
<td>✔</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>✔</td>
</tr>
<tr>
<td>RTL-SDR</td>
<td>N/A</td>
<td>✔</td>
<td>N/A</td>
<td>✔</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>✔</td>
</tr>
<tr>
<td>Redpitaya</td>
<td>✔</td>
<td>✔</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Blade RF</td>
<td>✔</td>
<td>✔</td>
<td>N/A</td>
<td>✔</td>
<td>✔</td>
<td>X</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Hack RF</td>
<td>✔</td>
<td>✔</td>
<td>N/A</td>
<td>✔</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
• A model emulating the LEO channel
• Path loss based on distance and/or atmospheric absorption
• Doppler effect
• **Great** tool for prototyping and experimentation
• https://gitlab.com/librespacefoundation/gr-leo.git
IQzip

- Focus on **lossless** compression of IQ data

- Investigate the best compression algorithm in terms of:
 - Compression ratio
 - Compress/Decompress computational resources
 - Standardization

- Implement API and tools for compress/decompress IQ data

- https://gitlab.com/librespacefoundation/sdrmakerspace/iqzip
And the winner is:

CCSDS 121.0-B-2
And the winner is: **CCSDS 121.0-B-2**!
gr-ccsds

- GNU Radio encoders and decoders implementing the CCSDS recommendation
 - Reed Solomon
 - Convolutional Coding $R = 1/2, 2/3, 3/4, 5/6, 7/8$
 - Turbo Coding
 - PCM
 - LDPC

- Testing with CCSDS modem from ESA!!!

- https://gitlab.com/librespacefoundation/gr-ccsds
• Characterize the performance of almost all available SDR devices
• Measurements for:
 • Noise floor
 • Receiver Dynamic Range
 • RX/TX spectral purity
 • TX Power
• https://gitlab.com/librespacefoundation/sdrmakerspace/sdreval/wikis/home
SDR & Machine Learning

- **Signnn**
 - Satellite signal classification through CNN
 - https://gitlab.com/librespacefoundation/sdrmakerspace/signnn

- **gr-orbitsense**
 - Signal presence or absence detection
 - Optimized for low SNR scenarios
 - https://gitlab.com/librespacefoundation/sdrmakerspace/gr-orbitsense

- **gr-dnn**
 - GNU Radio based framework for easy integration of Machine learning models
 - https://gitlab.com/librespacefoundation/sdrmakerspace/gr-dnn
More! (Under dev)

- SDR hardware radiation testing
- Direct sampling experimentation
- Improvements on UHD driver
- MIMO enabled ground station
- Framework for SDR testing CI/CD

More info at:
- https://sdrmaker.space
- https://gitlab.com/librespacefoundation/sdrmakerspace
Join the Conference!

Software Defined Radio for Satcom Applications
Conference
28-29 November 2019
Swiss Aeropole
(Payerne, Switzerland)

Enter is fee;
registration required.
For more informations:
https://sdrmaker.space/sdrcconference19