FORESAIL

An open Satellite
Platform beyond LEO

Petri Niemelä Aalto University

16.10.2019

Sustainability in space?

Society, Science and Technology

Sustainability in space?

Society, Science and Technology

- Society
 - Awareness of the global problem. Debris & threats
- Science
 - How to survive in solar system with a fusion explosion?
- Technology
 - Solutions to space debris problem
 - More robust and mature technologies?

Opening the designs?

- More open design?
 - → Better understanding of used technologies and solutions
 - → More mature designs
 - → More successful missions
 - → More sustainable space
- Openness can prevent from making same mistakes
 - So less in-orbit failures and broken-at-delivery satellites
- The true way to push the state of the art!

FORESAIL

Who we are?

Who we are?

- FORESAIL: Finnish Centre of Excellence in Sustainable Space
 - Aalto University: Finnish academic Cubesats
 - University of Helsinki: Space weather
 - University of Turku: Instruments
 - Finnish Meteorological Institute (FMI): Deorbiting systems

 aka all the top Finnish small space players funded by Finnish Academy

Who I am?

- Petri Niemelä
 - Master in Automation and Electrical Engineering
 - Doctoral Candidate in Space Science and Technology
 - Worked with Cubesats since 2013
- Foresail-1's systems engineer, chief engineer, developer....
- Expertises:
 - Software, embedded systems, electronics, RF, communication...
 - Everything from ground to space

Our previous work

- Aalto-1: The first Finnish satellite
 - 3U with 3 payload
 - Launched June 2017, still operating
- Aalto-2: QB50 satellite
 - Failure after 5 days
 - Deorbited after 20 months
- Suomi-100
 - "Jubilee" satellite to celebrate Finland's 100th year anniversary
 - Commercial platform with own payload

FORESAIL-mission

- FORESAIL-1: 3U Cubesat to LEO
 - "The first Finnish scientific satellite:"
 - Particle Telescope to observe energetic particles in upper ionosphere and their interactions
 - Plasma Brake to demonstrate Coulomb drag deorbiting method
 - How to built a satellite for harsh environment?
 - Launch: Summer 2020?

 Mission paper: "FORESAIL-1 CubeSat Mission to Measure Radiation Belt Losses and Demonstrate Deorbiting", Palmroth et al.

- FORESAIL-2: 6U Cubesat to GTO
 - "Lets dive to solar wind to make scientific observations!"
 - On paper but building hasn't started yet

Foresail platform

- Build for the FS1 mission
- <1U for avionics: OBC, ADCS, EPS, UHF
- Build for high reliability and radiation tolerance
 - Redundant subsystem designs
 - Most of the components will be radiation tested
 - Shielded with 4mm aluminum to decrease TID
- 3-axis stabilized
- Status: Building of the flight model starting now

How are we contributing for more sustain open space community?

By open sourcing design

- Open subsystem can be valuable for the community but...
- FORESAIL is not just a subsystem...
 - but the whole satellite bus
 - and the stack from ground to orbit!
- It's a full platform for a scientific mission
- But it's not a new standard
 - Not generic
- Only future shows it

Being totally open is difficult!

- Opening everything in your project is troublesome:
 - Decision processes?
 - Branching of the design?
- In worst case can kill the open project
 - Too ambitious
 - Too generic
 - Too much overhead...
- BUT this should not stop you from publishing!

Being totally open is difficult!

- Opening everything in your project is troublesome:
 - Decision processes?
 - Branching of the design?
- BUT this should not stop you from publishing!
- Not an open mission but a open platform
- Not openly managed project
- More like a high quality reference design

Technically...

- Not a "standard" PC/104-format
 - Smaller PCB and only 52-pin stack connector
- Communication using redundant RS-485 buses
 - Custom protocol on top for frame formatting, medium access control and reliability
 - Simple enough for any platform: Low-power MCU, FPGA, Linux..
- The bus offers multiple 3.6V and battery lines
- EPS, OBC, ADCS, TTC, MTQ, SS...

On-Board Computer

 Two identical cold redundant sides with safety critical Cortex-R4 cores

1 MB FRAM: For logs, housekeeping, firmware images and configuration values

128MB SLC-NAND: With YAFFS file system

- The on-board software!
 - FREERTOS based modular design
 - Build around ECSS PUS-style communication
 - All base software housekeeping and event databases
 - Attitude Control and Determination
 - + Ground commanding system

TT&C: UHF-radio

- Not just a RF radio but a telecomunication radio
- 437.125MHz, 20kHz, TDD
- 100krad tolerant Cortex-M0
- Cold redundant transceiver and RF chains
- Simple reliable space protocol:
 - True Time Division Duplex
 - Virtual Channel
 - Reliable Data Transfer protocol
 - Amateur repeater channel
- + SDR modem libraries for GS

Electrical Power System

- Built for 3U Cubesat
- 4x battery chargers with MPPT
- Controlled by rad-tolerant Cortex-M0
- 8x latching OCP+OVP switches (3.6V and batt)
- 3.6V bucks for easier voltage
- 2S2P Battery board design

Attitude Determination and Control System

- Mostly integrated to OBC
- UKH, PD-control, Spin Control etc.
 - Verified algorithm in HIL simulators and Helmhotlz + air bearing setup
- Hardware
 - Low power "analog" PSD sensor
 - "Digital" profile sensor
 - Magnetorquer driver
 - Air coils winded by a 3D printer

+ The documentation

- Designs are nothing with the documentation!
 - Design documents,
 - Test plans + hopefully results
- Not text books but they include all the important technical information

More...

Payloads:

- Low-power embedded SDR platform
- Scientific magnetometer
- Cheap and dirty RPi Camera payload

Ground segment designs:

- Ground stations control software
- Mission control software
- RF-designs (LNA/switch, SDR-setup)
- Rotator controller
-

Conclusion

- Not an open mission/project but open designs
- Hopefully publishing first designs sooon!
 - Designs
 - ✓ Licenses: University layers working with them.
 - Schedule: We should also finish the flight model

Thank you Questions?

Petri Niemelä

petri.niemela@aalto.fi

Find us from: spacecraft.aalto.fi

Aalto University School of Electrical Engineering

