High-performance on-board computer, data handling and SDR platform for cubesats

--<< Open Source Cubesat Workshop 24-25 September 2018 European Space Astronomy Center (ESAC/ESA) >>--

	Gómez-Cama ^{1,4} , Jordi Portell ^{1,4} , Adriano Camps ^{1,2} , José Bosch ^{1,4} , Manuel Carmona ^{1,4} ,	IEEC	UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH	Contact: juan.jose.ramos@upc.edu
Albert Casas ^{1,3} , Lluís Gesa ^{1,3} , Joan Mauricio ^{1,4} , Juan Francisco Muñoz ^{1,2} , David Roma ^{1,3} ,	 ¹ Institut d'Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain ² Grup de Recerca en Ciències i Tecnologies de l'Espai (CTE-CRAE-UPC), 08034 Barcelona, Spain 	INSTITUT D'ESTUDIS ESPACIALS DE CATALUNYA	. URERTAS PERPYRON,	
Carles Sierra ^{1,3} , Carlos Mansanet ^{1,3} , Albert Masip ^{1,4}	 ³ Institut de Ciències de l'Espai (ICE-CSIC), 08193 Cerdanyola del Vallès, Spain ⁴ Institut de Ciències del Cosmos (ICCUB), Univ. Barcelona (IEEC-UB), 08028 Barcelona, Spain 	CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS	UNIVERSITAT DE BARCELONA	UAB Universitat Autònoma de Barcelona

Motivation

- Need of a space-qualified platform with:
- High-throughput processing capabilities
- Versatility and reliability
- Easy configuration and use

Solutions available lack of enough power and/or adaptability \rightarrow custom solutions often needed \rightarrow overhead to projects


Aim: General-purpose high-performance solution

Team and background

Joint effort of different institutes collaborating inside IEEC: Group of experts from successfully accomplished space missions.

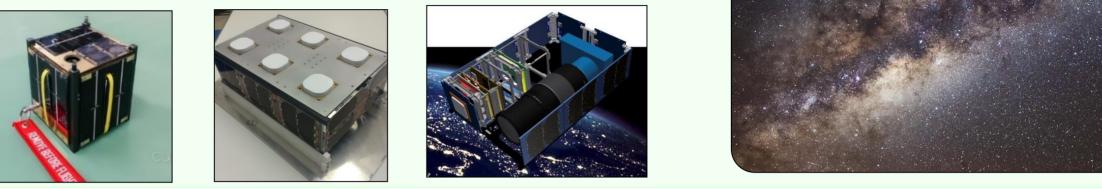
ICE / IEEC-CSIC:

Software for critical applications in space Data Management Unit of *LISA PathFinder* • Processing computer, diagnostic sensors • Mission critical flight software Currently working on *LISA* (ESA L3 mission)

CTE / CRAE / UPC:

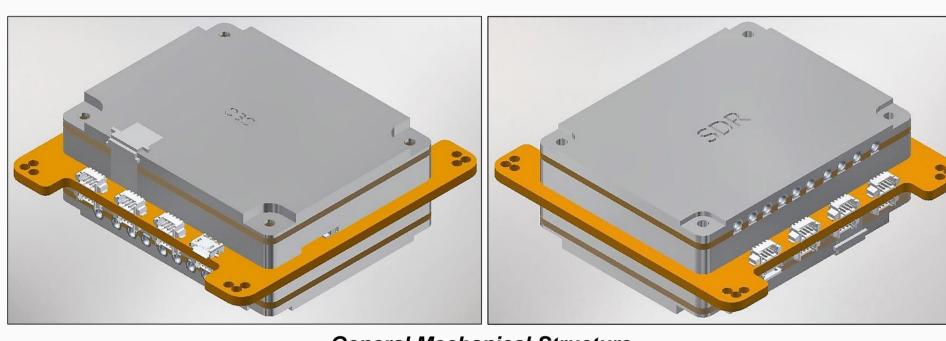
Successfully launched 1 cubesat Working on 3 "³Cat" ("cubecat") missions: • ³Cat-4: ESA's "Fly your satellite" program • ³Cat-5 A/B: FSSCAT Copernicus Masters winner

ICCUB / IEEC-UB: •SO/PHI:

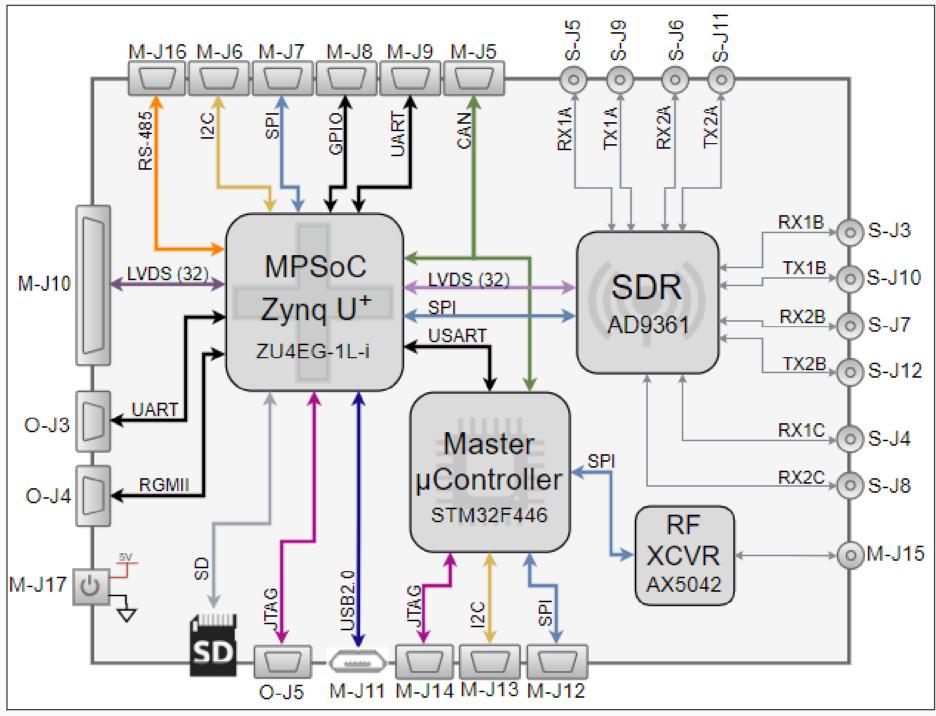

 Image Stabilization system based on tracking camera.

• Space-qualified hardware and firmware •Gaia:

- On-board data handling and compression
- On-ground daily data processing


Gaia, the global space astrometry mission

In-house knowledge and resources \rightarrow reduce costs, shorten design & development time, application of lessons learned from other projects and missions.



Hardware split in 3 boards:

• Motherboard, with On-Board Computer (OBC) • Daughterboard, with On-Board Data Handling (OBDH) • Daughterboard, with Software Defined Radio (SDR)

General Mechanical Structure

Overview

General Electrical Architecture

Overall operation:

• First power-up in orbit \rightarrow only OBC Acquire telemetry, comms with ground, monitor all subsystems, activate power supply to OBDH and SDR

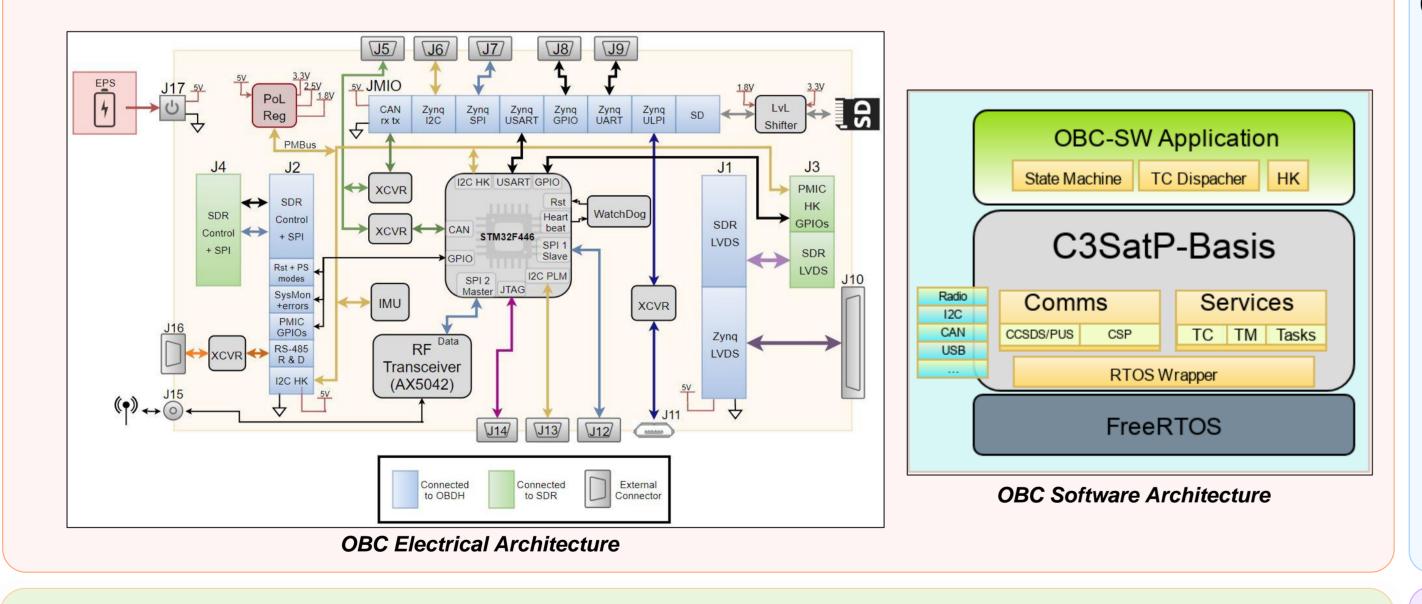
• OBDH \rightarrow control payload(s), process data, handle SDR • SDR \rightarrow communications and navigation

All internal power supplies:

• Large set of protections (OVP, OCP, thermal...)

• Provide housekeeping data

Allow changing voltages and sequencing

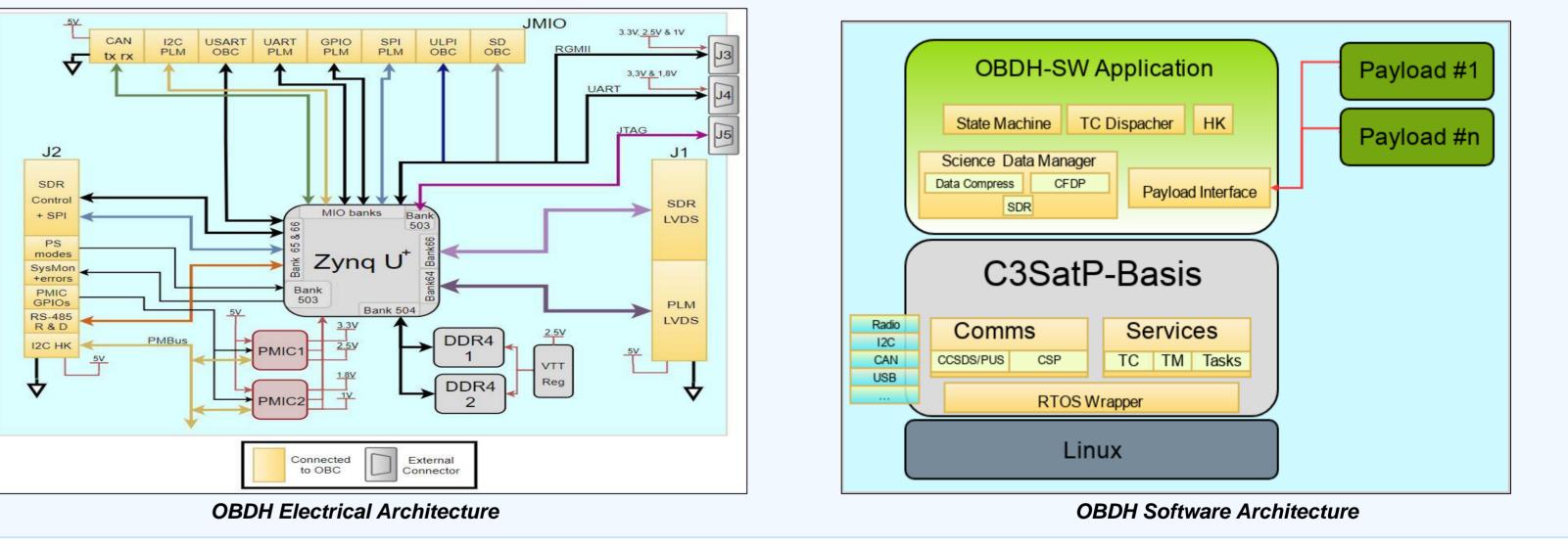

Optional components and external connectors on the motherboard depending on mission needs.

On-Board Computer (OBC)

On-Board Data Handling (OBDH)

- STM32F446RE μC (ARM[®] Cortex[®]-M4 32-bit 180 MHz), DSP and FPU, 512 Kbytes Flash. • External Interfaces : I2C, SPI, USART and CAN interface
- Inertial Motion Unit (Bosch), 9 deg. freedom (accelerometer, gyroscope, magnetometer) • Ultra-low power RF transceiver (On Semi), 434 MHz ISM band, simultaneous RX + TX

Software running under FreeRTOS and in charge of spacecraft control and ground commanding and housekeeping.


• Zynq Ultrascale+ XCZU4EG-1L-i (low power, industrial temperature range), High number of programmable logic resources: 192K logic cells, 18.5Mb memory, 728 DSP slices, 0.72V Core Voltage, Single Event Latch-up less likely to occur with low core voltage. Enhanced ECC for Single-Event Upset

• 2 ARM Cortex-A53 1.5GHz for computing + 2 ARM Cortex-R5 600MHz for real-time. 1GB DDR4 with EDAC • External Interfaces: I²C, SPI, CAN, RS-485, UART FAPEC

Control Software based on Linux using Cortex-A53 processing system with same architecture as

OBC with Data storage implementing CCSDS File Delivery Protocol and Management of payload(s).

Collect and compress data using FAPEC compressor (time series, lossless/lossy, images, multi/hyperspectral...).

Software Architecture

- Extremely modular and reusable with core inherited from the LISA PathFinder Payload Software services and methodologies.
- Following ECSS-E-40 and ECSS-Q-80 standards for software engineering for Space.

Use cases and conclusions

- Image processing: on-going study about adding a commercial camera
- EMI scanner to detect spoofing (ESA safety application)
- GNSS signal processing, either navigation or science

• Designed for multi platform : Hardware (Texas Instrument, STM32, ERC32, Leon, x86), Operating System (FreeRTOS, RTEMS, Linux) and multiprotocol (CCDS/PUS, CSP, CFDP, ...)

• Based in micro-services approach.

Software Defined Radio (SDR)

Based on AD9361 with Wide range supported: 70MHz – 6GHz

- 6 receiver inputs (2 simultaneous)
- 4 transmitter outputs (2 simultaneous)
- Fully configurable through SPI interfaces
- 12 LVDS RX/TX data lines, up to 240MHz clock
- RX/TX channels optimized for ISM 434 MHz, ISM 2.45 GHz and wide range band High radiation resiliency

E.g.: ionosphere monitoring, radio occultation, (late) solar flares detection

• Any mission requiring fully autonomous on-board massive data processing, allowing to download reduced subset of pre-processed data E.g.: FFT, light curves, soil/vegetation indicators, etc.

New platform with unprecedented performance capabilities in cubesat-sized missions Extremely modular solution:

- Allows adoption by several missions with small changes
- SDR + high number of programmable logic resources
- Implement all changes in (isolated) software modules \rightarrow keep hardware heritage intact Design ready, implementation well advanced, tests pending

Fully operational solution expected for 2019, first flight tests 2020

Acknowledgements

This work has been funded by the Agència de Gestió d'Ajuts Universitaris i de Recerca of the Generalitat de Catalunya through project 2016 PROD 00076 and co-financed by EU through FEDER founds

